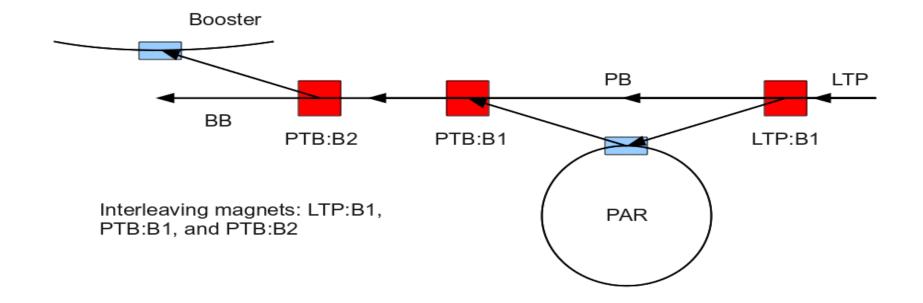
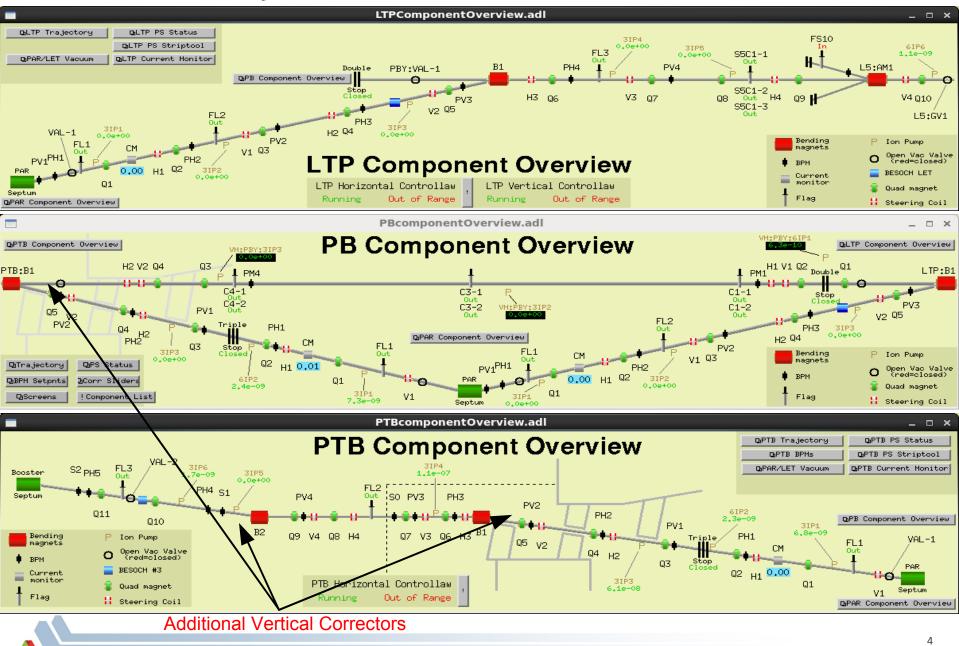


Proposal for Correcting Both PAR-To-Booster and LEUTL Beam Trajectories for Interleaving Operations

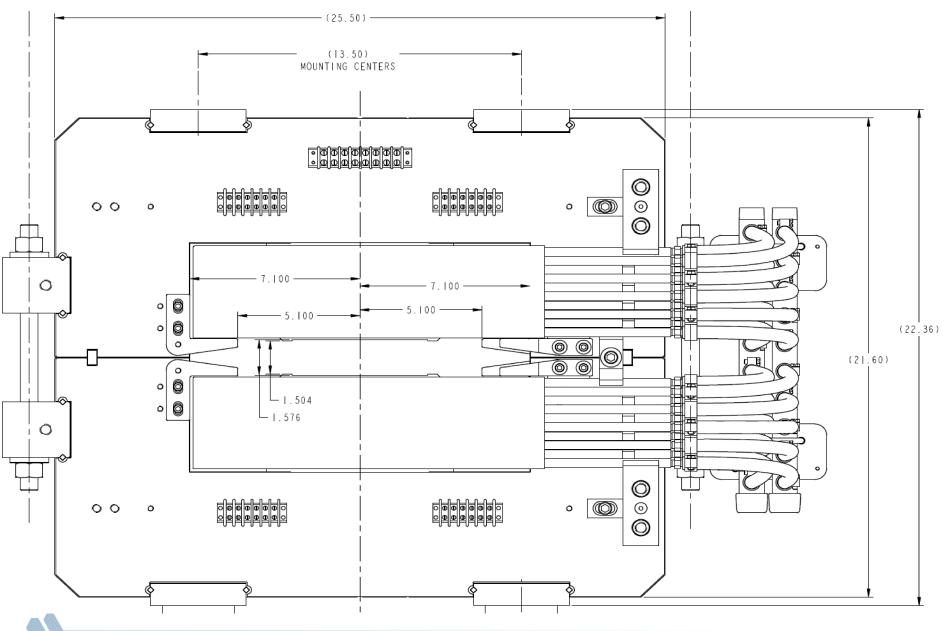
N. Sereno and J. Dooling


ASD - Diagnostics/AOP August 13, 2013

Outline

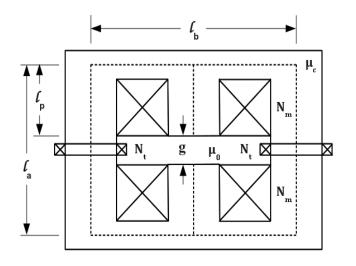

- Interleaving dipole beamline layout
- Interleaving dipole geometry
- Interleaving dipole bucking coil field calculation
- Requirements for interleaving dipoles used as correctors
- Additional correctors to correct PCGun beam trajectory through PTB to LEUTL

Beamline Layout



- Up to LTP:B1, both beams need to be corrected well using linac/LTP correctors/bpms (cancel remnant field and no new correctors needed)
- Main problem is correcting both beams through the common PTB transport line (cancel remnant field and new correctors added)

Beamline layout cont.



Interleaving Dipole Geometry

Bucking Coil and EMF Calculation

$$B_{g} = \frac{\mu_{0} N_{t} I_{t}}{g}$$
$$V_{EMF} = \frac{2 \mu_{0} w d N_{m} N_{t}}{g} \frac{dI_{m}}{dt}$$
$$\mu_{0} \ll \mu_{c}$$

Interleaving Dipole Parameters		
μ_{c}	~100-1000 μ ₀	
W (pole width)	0.198 m	
d (pole length)	0.4 m	
N _m (Magnet coil turns)	70	
N _t (Bucking coil turns)	10	
g (Magnet gap)	0.04 m	
∆t (rise/fall time)	50 ms	

- Interleaving dipole magnet field calculation (AOP TN by Dooling, Sereno)
- Windings can also be installed around the pole piece

Bucking Coil and EMF Calculation cont.

Interleaving Dipole Bucking Field Calculation / Measurement		
I _t (A)	B _g (G) Calculated	B _g (G) Measured
4	12.6	15

Interleaving Dipole Bucking Coil EMF Calculation	
I _m (A)	V _{EMF} (Volts)
139 (375 MeV)	9.7
350 (Max Current)	24.4

- Test in PS cage indicates:
 - The 8 G remnant field can be canceled using $N_1 = 10$ turns and $I_1 = 4$ A
 - Probably would want to go to $N_1 = 20$ turns and $I_2 = 2$ A to cancel remnant field
 - However, induced EMF (assuming 50 ms rise/fall time) doubles for $N_t = 20$ turns
- How much EMF can a realistic 2 A supply survive?
- Next look at what it would take to make the bucking coil a corrector similar to the PTB

Interleaving Dipoles Used as Correctors

- May want to simply buck the remnant field of the dipoles and add H/V correctors upstream of PTB:B1 and downstream of PTB:B2
- Or, add only vertical correctors upstream of PTB:B1 and downstream of PTB:B2 and use bucking coil as a corrector
 - Saves one power supply
 - One would like to use controllaw for LEUTL trajectory control may affect PAR to Booster transport if bucking coil current is updated frequently
- LTP/PTB correctors:
 - Have ¹2.018 x 10⁻³ T-m / A integrated field per Amp
 - Are typically run at +/- 0.5 A during operations
- For operation margin, how much field do the interleaving dipole bucking coils need to produce to have the same field integral as the LTP/PTB correctors at +/- 1 A?
 - Bucking coil field would need to be 5×10^{-3} T = 50 G (for d = 0.4 m)
 - Requires 16 A for N_{t} = 10 turns
 - Requires 5.3 A for N_{f} = 30 turns (V_{FMF} = 29 V for 139 A 375 MeV operation)
- So, once again the question becomes what performance can one expect from a realistic power supply?

¹AOP-TN-2013-009